Who We Are at FTI Consulting

Michael Salve, Ph.D.
Senior Managing Director

Testifies in State and Federal Court on FCA matters and OMIG hearings on sampling issues.
Results of his statistical work have been presented to the CMS, ZPIC and Medicare.
He has been deposed by the US DOJ and has been cross examined by the New York State Office of the Medicaid Inspector General.

Adjunct faculty at CUNY where he teaches Econometrics, and Law and Economics in the graduate economics program.

Robert Fuite, CFA, MA
Managing Director

Expertise in the fields of economics, mathematics, statistics, and computer science.
Complex and big data analytics, false claims act litigation, designing statistical samples and extrapolations in healthcare litigation and constructing the appropriate database architecture for medical claim line/record review and analysis.
Retained to perform proper extrapolation methodologies to unknown populations and identify potential bias in existing samples.

Who Our Clients Are

Anyone in the Healthcare Industry with Claims Data . . .

Providers being audited for overpayments;
Defendants in a qui tam False Claims Act action;
Pharmacies with government payor credit balances;
Providers who want help negotiating with Medicare statisticians (including Medicare Advantage);
TPAs who want statistical benchmarking;
Private health plans using TPAs to adjudicate claims;
Health insurers seeking patterns of known fraud.
The Rise of Healthcare Audits:

The healthcare landscape has changed. State and Federal government entities such as CMS and the OIG are now combating alleged waste and abuse with new data analytics, pattern recognition and analysis tools.

They are also mandated to apply statistical sampling and extrapolation methods to their audits. In this climate the OIG’s RAT-STATS software and sampling are hot topics.

Providers are confronted by an ever increasing alphabet soup of governmental organizations that conduct healthcare audits.

- Human Services Office of Inspector General (OIG)

 - The OIG “conducts and coordinates criminal, civil, and administrative investigations of fraud, waste, abuse, and misconduct related to more than 100 Department of Health and Human Services (HHS) programs and operations.”

- State Healthcare Regulator/Inspector Entities

 - New York Office of Medicare Inspector General (OMIG)

The Rise of Healthcare Audits:

- U.S. Department of Justice (DOJ)
 - False Claims Act (FCA) litigation

There are a myriad of sources of potential healthcare audits that involve sampling, to name but a few.

- Zone Program Integrity Contractors (ZPICs)
 - The perilous thing about the ZPIC is its ability to initiate a fraud investigation. The bottom line is that the supplier does not want the Medicare contractor to turn its file over to the DOJ OIG.

- Other Contractor Audits - Medicare Administrative Contractors (MAC) / Recovery Audit Contractors (RAC)

- State Medicare Audit – NY OMIG

These audits may use statistical sampling to calculate and extrapolate the amount of overpayments made on all claims during a time period subject to the audit. This allows the audit to generate large overpayments with minimal work.

One of the prominent tools of the OIG is a statistical software program called RAT-STATS.
Use of Statistical Sampling

Auditors often rely on sampling protocols that include the use of RAT-STATS, MDaudit Analytics or other similar statistical software. Some of these standards have been described in the CMS Medicare Program Integrity Manual.

Audits are often performed by non-statistical experts, following protocols, while the healthcare provider is also often ill-equipped to be able to evaluate a proposed sampling methodology.

Involve experts in statistics and sampling early in the process to ensure a proper understanding of the sample review process.

Types of sampling:
- Judgment sample
- Convenience Sample
- Probe or Discovery Sample
- Simple Random Sample
- Stratified Random Sample
- Two Stage Random Sample

Sampling Terminology:
- Confidence Interval
- Margin of Error
- Level of Precision

The Extrapolation

OIG RAT-STATS Statistical Sample Extrapolation

Traditional & Innovative Approaches

Can we identify a pattern of false claims in the audit results? Can we isolate the false claims to certain doctors, facilities or periods of time? Can we help use the network analysis to identify the “racket” or relationships between doctors perpetrating the fraud? After the case, identify potential fraud/false claims going forward?

Traditional analysis of correlations and tabulations produced little or no results. More sophisticated approaches such as logistic regression also produced poor results identifying and predicting fraud/false claims.

The claims or medical billings are also not the fraud generating process, they are a symptom. Can we create a proxy of the fraud generating process by analyzing the patient’s doctors?
- Which doctors treated the patients?
- How were these doctors related to one another?
- Is there a pattern to a patient’s fraudulent claims and the doctors who treated them?
The Rise of Big Data in Health Care Analytics

Past decade:
- Huge increase in data collection and storage;
- Huge advances in computing power ability to analyze data using statistics, mathematics and computer science. Specifically:
 - Graph or Network Theory
 - Complexity Systems
 - Machine Learning:
 - Supervised Machine Learning
 - Unsupervised Machine Learning
 - Cloud Computing

We will focus on Networks and Fraud in Healthcare Data

What are Other Players Doing About Fraud, Waste & Abuse?
Fraud, Waste and Abuse – What CMS is Doing

CMS has implemented a much more sophisticated data analytics program than it has used in the past.

CMS has developed the Fraud Prevention System (FPS) to implement predictive analytics technologies to identify and prevent the payment of improper claims in the Medicare fee-for-service program.

First time predictive analytic technology has been used by the government on such a large scale for the purpose of identifying health care fraud, waste, and abuse.

Prior to this CMS was "Pay and Chase."

Primary government contractor working on FPS is IBM, the same folks who created "Watson" (as seen on Jeopardy!)

CMS is continually improving their FPS. Its Analytics Lab Division is staffed by experts in data analysis, statistics, and behavioral and other social sciences and uses contractors such as IBM.

They are continually adding more sophisticated techniques such as Social Network Analysis (SNA) to their models.

CMS is utilizing a more comprehensive approach to target high-risk and high-dollar paid amounts:

Figure 3. Comparison of Previous and New Analytics Approach
Network Theory: The New Language of Statistics

Network Analysis: New Concepts & Ideas

Network analysis is visualizing and evaluating relationships and flows between physicians, rendering organizations and patients.

It helps to create simple, yet powerful tools and models for understanding the behavior of complex reimbursement data.

Complexity made simple through the use of graphs –

Graphs: The study of graphs, which are mathematical structures used to model pairwise relations between objects. A "graph" in this context is made up of "vertices" or "nodes" and lines called "edges" that connect them.

The Real World is Interconnected

Networks and interconnectedness are all around us

Social networks are not just for Facebook and LinkedIn. Networks or associations can be created from many different sources:

- Medicare reimbursement data for chiropractic manual therapy
- Multiple doctors seeing the same patient on the same day
- Doctors in a facility charging the same set of CPT codes
- The same doctors working in different facilities
- Doctors working on same patients and charging same percentages in excess of UCR
New Language of Network Statistics

- **Node centrality**: Node centrality can be viewed as a measure of influence or importance in a network model.
 - **Closeness**: Average distance that each node is from all other nodes in the network.
 - **Betweenness**: Number of shortest paths in a network that traverse through that node.
 - **Degree/Strength**: Number of links of the node.

The New Average and Standard Deviation:

- **Subgraphs or Groups**: Network sciences now allow for new methods as to find clusters or subgroups.
 - **Clique**: A completely connected network, where all nodes are connected to every other node.

- **Modularity**: Measures the strength of division of a network into modules (also called groups, clusters or communities).
 - "All my friends know each other.
 - This is sometimes described as the friends of my friends . . . are my friends."

The New Language of Statistics: Network Visualizations and Applications to Health Care
Fraud and Networks

Why is Fraud so challenging?
- Uncommon
- Well considered
- Purposefully concealed
- Time-evolving
- Often involves multiple people or teams
- Can appear in many types and forms
- Hard to detect (Bank Robbery v. Health Care Fraud)
- What is the “Fraud Generating Process”?+
- People commit fraud, not invoices or other data
- Typically we have data, such as claims, invoices or receipts. These data are not the fraud itself but the symptoms of the fraud. They are the breadcrumbs or clues to the fraud.
- This is what makes fraud detection a challenge. The visible clues or data pieces are simple clues which may or may not indicate the fraud and they are not the fraud generating mechanism or process.
- The new science of networks or social network analysis now allows the ability to focus on the real fraud generating process, people.

How Can Networks Help in Fraud Detection?

“Birds of a Feather Flock Together” - Homophily

- When do social networks help in fraud detection?
- When there are observable effects present in the network or “birds of feather stick together” Which is called “Homophily” in the network sciences.

In sociology:
- People have strong tendency to associate with others whom they perceive as being similar to themselves in some way (e.g. same hobbies, interests, etc.).

In fraud networks:
- Fraudulent people are more likely to be connected to other fraudulent people and legitimate people are more likely to be connected to other legitimate people.
- The more your social network influences your fraudulent behavior the more social network analysis will assist with fraud detection. That is the more homophilic the network the more effective the tool.

How a Network Visualization & Fraud Detection Begins
Case Background

- Large healthcare provider that operated numerous care facilities.
- A whistleblower filed a lawsuit against the provider and the DOJ elected to join the case.
- Case captions will often be “United States of America, ex Rel. Jane Doe”
- Allegations involved the provider making “false claims” or billings to the US. Gov’t.
 - False Medical Certifications
 - Up-coding
- The case involved 960,000 medical claims and tens of thousands of patients.
 - The DOJ’s expert elected to perform a stratified random sample of patients that involved 1200 claims were selected the claims reviewed for overpayments and false claims.
 - Of these 1200 medical claims 150 were identified as being a “false claim”
- These 150 false claims were extrapolated to the entire population of 960,000 claims for tens of millions of dollars.

Social Network Analysis – Mapping Health Care Data

- Mapping The Doctor’s Relationships
 - By using the claims data itself we were able to create a network of the doctor relationships.
 - We create a link between doctors if they treated the same patient.
Mapping The Doctor's Relationships

- By calibrating the node size to match degree, we can see that the doctors associated with the fraudulent claims are often:
 - Doctors associated with fraud also appear to be associated with one another.
 - "Red Begets Red" (Homophily)
 - Many of the fraudulently associated doctors have many connections and are towards the center of the network, but are not its heart.
 - More advanced network techniques indicate that the more "influence" a doctor has on the network the less likely associated claims will be fraudulent.
 - The fraudulently associated doctors have a high number of low quality or low influence connections.
 - Isolate and help define the "Racket."

Social Network Analysis – Alternative Layouts

- Revisualization of data: Providers v. Doctors.
Social Network Analysis – Alternative Layouts and ‘Communities’.

Who We Are

Michael P. Salve, Ph.D.

Senior Managing Director

230 5th Ave., 19th Floor, New York, NY 10010
+1 212.782.3565
michael.salve@fticonsulting.com

Michael Salve is a Senior Managing Director in FTI Consulting’s Economic Consulting Services practice based in New York City. Dr. Salve is an applied economist with experience in advanced econometric and statistical methodology in various industries and sectors. His work focuses on statistical sampling techniques, network analysis, econometric modeling, and fraud and abuse issues, with a particular emphasis on healthcare industry-related matters. He has extensive experience in addressing complex issues in areas such as healthcare fraud, abuse, and misuse, and has also been involved in related regulatory and compliance matters.

Dr. Salve has a doctorate in economics and has taught at Boston College and Suffolk University. He has also been a teaching fellow at the Massachusetts Institute of Technology and has taught at the University of California, Berkeley. He has been a consultant to various organizations, including the United States Department of Justice, the Federal Reserve, and the Federal Trade Commission, and has been a speaker at numerous conferences and seminars.

Dr. Salve has been involved in many high-profile cases, including the Kaiser Permanente case, the UnitedHealthcare case, and the Enron case. He has also been involved in numerous other high-profile cases, including the UnitedHealthcare case, the Enron case, and the Kaiser Permanente case. He has been a consultant to various organizations, including the United States Department of Justice, the Federal Reserve, and the Federal Trade Commission, and has been a speaker at numerous conferences and seminars.

Dr. Salve has been involved in many high-profile cases, including the Kaiser Permanente case, the UnitedHealthcare case, and the Enron case. He has also been involved in numerous other high-profile cases, including the UnitedHealthcare case, the Enron case, and the Kaiser Permanente case. He has been a consultant to various organizations, including the United States Department of Justice, the Federal Reserve, and the Federal Trade Commission, and has been a speaker at numerous conferences and seminars.
Robert D. Fuite, CFA, MA

Managing Director
1111 Third Ave, 12th Floor, Seattle, WA 98101
+1 206.689.4489
robert.fuite@fticonsulting.com

About
Robert Fuite is an applied economist and data scientist with extensive experience in litigation consulting, providing economic, financial, statistical, and valuation analysis services in property and casualty, property and liability, and life and health insurance industries. He has a wealth of experience in the fields of microeconomics, econometrics, statistics, and computer science.

Mr. Fuite has a Master’s degree in economics, with a concentration in econometrics. He is a CFA charter holder and a member of the New York Society of Security Analysts. He has also guest lectured on advanced econometric topics in graduate economics classes in both Econometrics, and Law and Economics at Hunter College in New York City.

Mr. Fuite uses his broad experience in designing statistical samples for extrapolation purposes in life sciences litigation and regulatory proceedings. He has also consulted with healthcare providers and a third party administrator to benchmark their statistical models and assisting with evaluating their sampling and audit programs.

He has applied social network analysis and graph theory in fraud detection. He has also used various statistical techniques, such as sophisticated modeling and econometric analysis, to help clients with data interpretation and analysis in complex litigation cases.

Prior to joining FTI, Mr. Fuite was a co-leader of the economic and data analytic practice at Alvarez & Marsal. Prior to that, he was a Senior Manager with Ernst & Young LLP Transaction Advisory Services Group and was the Western Canada Business Modelling Leader. He was also Assistant Vice President of Risk Management for Nationwide Risk in the Customer Risk Management Group.

Critical Thinking at the Critical Time ™